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Abstract

Ray tracing calculations are performed for shear Alfvén waves in two-ion species
plasmas in which the magnetic field varies with position. Three different magnetic
topologies of contemporary interest are explored: a linear magnetic mirror, a pure
toroidal field, and a tokamak field. The wave frequency is chosen to lie in the upper
propagation band, so that reflection at the ion-ion hybrid frequency can occur for
waves originally propagating along the magnetic field direction. Calculations are
performed for a magnetic well configuration used in recent experiments [S. T.
Vincena, et al., Geophys. Res. Lett. 38, L11101, (2011); S. T. Vincena, et al., Phys.
Plasmas, 20, 012111 (2013)] in the Large Plasma Device (LAPD) related to the ion-
ion hybrid resonator. Itis found that radial spreading cannot explain the relatively
low values of the resonator quality factor (Q) measured in those experiments, even
when finite ion temperature is considered. This identifies that a damping
mechanism is present that is at least an order of magnitude larger than dissipation
due to radial energy loss. Calculations are also performed for a magnetic field with
pure toroidal geometry, without a poloidal field, as in experiments being planned for
the Enormous Toroidal Plasma Device (ETPD). In this case, the effects of field-line
curvature cause radial reflections. A poloidal field is included to explore a tokamak
geometry with plasma parameters expected in ITER. When ion temperature is
ignored, it is found that the ion-ion hybrid resonator can exist and trap waves for
multiple bounces. The effects of finite ion temperature combine with field line
curvature to cause the reflection point to move towards the tritium cyclotron
frequency when electron temperature is negligible. However, for ITER parameters,
it is shown that the electrons must be treated in the adiabatic limit to properly
describe resonator phenomena.

PACS: 52.35 Bj, 52.50 Qt, 52.55Pi
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I. INTRODUCTION

In a magnetized plasma with two ion species, the perpendicular component
of the cold-plasma dielectric coefficient, ¢, , can vanish at a frequency known as the

ion-ion hybrid frequency [1,2],
W, + w2, Q
e (1)

p2

.

il

2
W, +

where w, and €2, refer respectively to the ion plasma frequency and the ion

cyclotron frequency of species j. The vanishing of w, causes a collective resonance

for waves propagating across the confinement magnetic field, typically the
compressional or fast Alfvén wave. This resonance has been exploited in schemes
used to heat minority ion species in magnetically confined plasmas [3-7]. In
contrast, for the shear (or the slow) Alfvén wave that propagates primarily along the
confinement magnetic field, the ion-ion hybrid acts as a cutoff and not a resonance.
This property can be seen by examining the dispersion relation for shear waves
with large perpendicular wave number, &,

k”=k0\/8L[1—ki/kg€“], (2)

where k, is the parallel wave number for frequency @, k, = w/c with c, the speed
of light, and ¢, the dielectric coefficient parallel to the confinement magnetic field.
Here, large perpendicular scale means that kLc/a)pi >> 1, or that the perpendicular

wavelength is much less than the smallest ion skin-depth. When this condition is
violated, coupling between the compressional and shear Alfvén waves occurs, and
the expression given by Eq. (2) is not adequate. Under such conditions, the off-
diagonal component of the dielectric tensor, €,,, must be included in the

formulation of the dispersion relation leading to a more complicated expression.

The wave cut-off at the ion-ion hybrid frequency leads to a propagation gap
in which the shear wave is evanescent, occurring over the frequency range,
Q =w=w,;,where Q, is the gyrofrequency of the heavier ion species. This

separates the propagating frequency range for shear waves into two bands, w <Q,
and w; <w <Q,. When a shear wave in the upper frequency band propagates into a

region of increasing magnetic field, the wave reflects at the position where the
frequency of the wave matches the local value of the ion-ion hybrid frequency. This
feature has been confirmed by experiments in linear devices [8] and tokamaks [9].
[t is possible for a magnetic well to form a natural resonator for the shear waves,
since two conjugate reflection points trap the wave, confining the energy. It has
been proposed that this type of resonator should naturally exist in planetary



magnetospheres. Guglielmi et al. [10] calculated the resonator spectrum and
compared it to satellite observations, but they were unable to confirm the existence
of the resonator. Moiseenko and Tennfors [11], motivated by analogies to low
frequency toroidicity-induced Alfvén eigenmodes (TAE), have considered the role of
vanishing ¢ in tokamak geometry. The authors identified a new class of high-

frequency toroidal eigenmodes that they named TLE (or TAE-like eigenmodes), but
they did not explore the possibility of a resonator. A recent study by the present
authors [12] has raised the possibility of a resonator existing in a burning plasma,
but the study used a one-dimensional model and neglected the complicating
geometrical effects that exist in a tokamak. The resonator has been verified
experimentally [13] in the Large Plasma Device (LAPD) at the University of
California, Los Angeles (UCLA). In that study, shear waves were launched in a linear
device with a magnetic well configuration. Resonances were observed when the
antenna was operated in both single frequency scans and pulsed configurations.
The quality factors (Q) of the resonances were observed to be between 11 and 18, a
value much smaller than expected from cold plasma theory considerations [14].

For a specific magnetic well geometry, ray tracing studies are useful in
determining the degree to which the wave energy can be trapped. Rauch and Roux
performed ray tracing studies in a dipole magnetic geometry for a cold plasma [15]
in an effort to explain GEOS 1 and 2 spacecraft measurements. That study showed
that the shear Alfvén wave in the upper frequency branch is largely confined. The
authors concluded that energetic protons could excite the waves, and that these
waves would ultimately damp on the electrons due to increasing perpendicular
wave number with each successive passing through the equatorial plane. Another
study by Mithaiwala et al. [16] examined the excitation of this natural resonator by
an active neutral gas release. These authors also performed ray tracing studies and
showed that the rays did not wander significantly after several reflections in the
magnetosphere. They identified that a radial reflection in the group velocity arises
due to the off-diagonal component, ¢, of the dielectric tensor. Another

investigation has been performed that used ray tracing to determine candidate
wave modes for alpha channeling in mirror machines [17]. In a later paper [18], it
was determined that the shear waves present in the ion-ion hybrid resonator are
ideal for implementing the alpha channeling concept.

The present survey builds on the previous ray tracing studies to assess the
properties of possible ion-ion hybrid resonators in other geometries relevant to
contemporary laboratory experiments, and with differing plasma parameters.
Specifically, ray tracing studies are performed in a geometry relevant to LAPD to
assess the importance of radial spreading in determining the low quality-factors (Q)
measured [13,14]. Ray tracing studies are also performed in toroidal geometries to
understand more clearly whether a resonator could exist within a burning plasma.
Because of the large ion temperatures that would exist in such a plasma, finite
Larmor radius (FLR) effects for the ions must be included in the dispersion relation.
The introduction of finite ion temperature into the problem allows the possibility of



coupling between the shear wave and the ion-Bernstein wave (IBW). Recent
minority-heating experiments performed in the Alcator-C Mod tokamak have
shown that the compressional wave can experience mode conversion into both
shear waves and IBWs at the ion-ion hybrid resonance [19], leading to strong
toroidal rotation of the plasma. Numerical simulations have been performed to
better understand this observed mode conversion process [20]. While the present
study does not address the mode conversion problem, it illustrates the effect of ion
temperature on the ray trajectories for burning plasma conditions in ITER.

The manuscript is organized as follows. Section Il reviews the ray tracing
formulation and details the numerical method used to solve the resulting equations,
paralleling the method used by Rauch and Roux [15]. The section also presents
expressions for the group velocity that are used in analyzing the results for different
plasma devices. Section Il examines group velocity contours and ray trajectories
relevant to a recent experiment performed in LAPD [13,14], and estimates the
quality factors expected for the resonator due to radial spreading of the wave
energy. Section [V examines the ray trajectories of waves launched in the Enormous
Toroidal Plasma Device (ETPD) [21] and discusses the effects of field-line curvature
on the ray. Section V considers ray trajectories of waves in ITER and discusses the
implications of finite temperature effects. Section VI summarizes the results.

II. FORMULATION
A. Ray Tracing Equations

In formulating the ray tracing equations, the dispersion relation is used to
determine the frequency as a function of the wave vector and the plasma
parameters (which presumably vary with position but are assumed constant in time
in this manuscript). This frequency then becomes the effective Hamiltonian for the
ray trajectory with the wave vector playing the role of the canonical momentum
[22]. However, the ray tracing equations for the position of the ray, r, can
alternatively be formulated in terms of the index of refraction [23], n, and the
scaled wave vector, V=K/k, . In this approach, the ray tracing equations take the

form
ar 1 on
—=—|v-n—1|, 3
ds nz( GV) ()
dv 1dn
AP )
ds nor

In Egs. (3) and (4), s is a measure of the path length and is related to the time
variable through s=cr.



To apply the previous equations to the situations of interest here, the
expression for the index of refraction must be obtained for the shear Alfvén wave.
The dispersion relation is extracted from Maxwell's equations with the plasma
dielectric included. This leads to the expression,

(,sL -n’ )(slgn —g,n’sin> Y - g cos’ 1/1) -¢., (6” —n’sin’ 1,0) =0, (5)
where 1 is defined as the angle between the confinement magnetic field and the
scaled wave vector. It obeys the relation,

v-B, =nB,cosy . (6)

In Eq. (5), the role of the off-diagonal term of the dielectric tensor is clear; it
leads to coupling between the shear and the compressional roots. This is seen by
the fact that upon neglecting it, the dispersion relations for the shear wave and the
compressional wave are recovered independently for any . Including this term

2 belbI1-4ad/p’ 7

)

leads to the expression,

2a
with,
a=¢ sin*yY+gcos’ Y, (8)
b=(si —sfy)sinZ1/)+e3l£”(1+cos2 1/1), 9)
d=g(el-¢). (10)

The appropriate sign must be chosen for the shear root. Itis not specified here as
the choice depends on the value of the wave frequency relative to the cyclotron

frequencies of the individual species. From Eq. (7), it is clear that n only depends
on v through the angle, y. Differentiating Eq. (6) with respect to v results in the

expression

9y _ VB, cosy —nB,

11
v n’B, siny (11)

In all the following work, the other derivatives are evaluated numerically due to the
complexity of the resulting analytic expressions.



In numerically solving the system, it is apparent that there are seven
equations that must be satisfied (six from the differential equations, and the
seventh, from the dispersion relation requirement that |V| =n ) with six unknowns.

In this sense, the system is over-determined. Rigorously, the dispersion relation
property simply reflects that the Hamiltonian for this system is conserved, and a
correct solution of the differential equations must have this property. In practice,
however, due to numerical errors, this condition can be violated after a few
computational steps are implemented. In order to address this problem, a
technique proposed by Yabroff [24] is adopted in which V is renormalized after
each numerical update so that it maintains the proper length, n.

In choosing a numerical scheme, due to the computational expense of each
function evaluation, a multi-step method is preferred. For the implementation in
this study, a fourth order Runge-Kutta scheme is used for the first four time steps,
and following that, a fourth order, Adams-Moulton predictor corrector method is
used. This enables the time step to be halved or doubled depending on the relative
error present in the calculation.

In evaluating the index of refraction, Eq. (7) is sufficient for the cold plasma
case as the dielectric components only depend on the frequency, the densities of the
relevant species, and the local value of the magnetic field. When ion temperature
effects are included, ¢, and ¢, become functions of k, =k,nsiny (see Egs. (17) and

(18) in subsection IIB). It naively appears that Eq. (7) can be solved by fixed point
iteration. However, this method fails to converge quickly near reflection points.
Because of this behavior, Newton's method is used to solve the implicit equation
numerically.

B. Group Velocity

Regardless of how the ray tracing equations are handled, the ray moves along
a path determined by the local group velocity. Thus, it is useful to understand the
behavior of the group velocity when interpreting the ray tracing results. The

parallel and perpendicular group velocities are expressed as

_aw

v, =—), 12
gll ak” ( )
dk,
VgJ_ = _a_kjll_vgll ) (13)

In evaluating these expressions, the cold plasma approximation for the parallel
dielectric is used,



g =>—-—L. (14)

For the perpendicular dielectric and off-diagonal components, both the cold and
warm plasma expressions are considered in order to determine the relative effects
of finite ion temperature on the rays. The cold plasma expressions are

2 2
C -
gl:(v_) L (15)
N W W
1 2
w
2
Q.
D e e (16)
7 Q- w
J=12 750 ]

where v, = B/,/4le. is the effective Alfvén speed and g; is the total ion mass

density. In these expressions, the frequency is assumed to be on the order of the ion
cyclotron frequencies and much less than the electron cyclotron frequency. As a
result, the displacement current and the electron contribution have been neglected
in ¢,. In ¢, the electron contribution has been partitioned to match each ion

contribution to yield the compact expression in Eq. (16). When ion temperature
effects are included, the expressions are

S, L(kK2p)e ™
gL:EE% — (1p2)2 ' (17)
R @ ~2p
Q, 2
_ w;, S W 2 . e
) _wQ+E wsg,l - (1 (ke7)-n(ke))e ™, a8y

where p; is the thermal Larmor radius of the j-th ion species, and /; is the modified

Bessel function of order /. From these expressions, it is seen that in this
approximation, v,/v, <<1, the dielectric does not depend on k,, which makes it

straightforward to solve the dispersion relation for k,. The resulting expression is



k? = %[ijsl +kiolkie, -k = D), (19)

D= \/kj(1+k§538l)2 sakiel (1+4207) (20)

with 6, =c/w,, the electron skin depth. This expression can be used to evaluate the

parallel and perpendicular group velocities leading to

v, = 4, .21
[2+K20 k162 (14 K263, ) /D]a(zo(kjsl)i%jew(ukféf ) /Daaw(kg%)

2k§(1+kf5§)(q ‘;? —e, 22@)—1{ 3}? (262 442 (144267
1

Vgl =G+ 2k”[2k”2+ki—k§€l (2+kié€2)j| ’ (22)
o[k (1-Ki0e, ) - 2Kik0%e, ki, ~ k50! (e}, - 22)] 23)

k(2 +K —Ige, (2+4767)]

In the following sections these expressions are evaluated for the relevant machine
parameters.

III. PROPAGATION IN LAPD

To better understand the ray trajectories to be presented, it is useful to first
consider the behavior of the group velocity for the relevant plasma conditions.
Figure 1 shows color contours of the dependence of the group velocity on
perpendicular wave number and scaled frequency, using the cold ion dielectrics in
Egs. (15) and (16). The parameters correspond to those of the recent resonator
experiment in LAPD [13, 14]. A hydrogen-helium plasma is considered with
concentration ratio n, /n, =0.45 and satisfying charge quasi-neutrality. The

electron density is n, =1.3x10">cm™, the magnetic field, B =750 G, giving an Alfvén

speed of v, =8.85x10"cm/s . Figure 1 displays the components of the group velocity

vector as color contours over a relevant range of values of the scaled perpendicular
wave number and scaled wave frequency. The top panel, Fig. 1a, illustrates the
dependencies of the parallel group velocity, and the bottom panel, Fig. 1b, those of
the perpendicular group velocity. On the horizontal axis, the wave frequency is
scaled to the cyclotron frequency of helium. In the LAPD resonator experiment this
would be equivalent, for a fixed wave frequency, to the axial coordinate along which
the strength of the magnetic field varies. On the vertical axis, the perpendicular



wave number is scaled to the electron skin depth and shown over a positive range of
values. Note that the color scale for the bottom panel, Fig. 1b, is two orders of
magnitude smaller than in Fig. 1a, and also, that it includes positive and negative
values since the waves can have a backward character in the perpendicular
direction. From these displays, it is clear that fork,d, > 0.1 (indicated by the white

dashed line), the parallel group velocity is much larger than the perpendicular group
velocity resulting in essentially field-aligned propagation. There is a parallel cutoff
for the wave at the ion-ion hybrid frequency, ®/Q,, =2.12, represented by the

vertical, dashed red line. For higher scaled-frequencies the wave is backward-
traveling with the perpendicular phase velocity and the perpendicular group
velocity having opposite sign. These are all typical characteristics of the shear wave.
As k, decreases towards zero, the perpendicular group velocity switches sign,

becoming a forward-propagating wave. In this region the ion-ion hybrid frequency
ceases to act as a cutoff, and the wave is no longer field-aligned, having a significant
perpendicular component to the group velocity, as is more typical of a
compressional mode. However, in LAPD the finite radial dimension of the plasma
does not allow these compressional features to play a role, i.e., the window of
propagation lies above the white dashed line indicated in Fig.1. Lastly, the peculiar
feature at w/Q,, =3.04 deserves mention. At this frequency the off-diagonal

component of the dielectric tensor, ¢, vanishes; since no coupling to the

compressional mode exists, the mode remains backward- traveling for all values of
k, . For ageneral two-ion species plasma this behavior occurs at the cross-over

frequency,

2 3 2 3
2 _ a)plQZ +a)p2Ql

Wy . (24)

) 2
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Figure 2 presents horizontal line-cuts of Fig. 1, illustrating the variation of
the group velocity components at selected values of the scaled perpendicular wave
number. The top panel, Fig. 2a, again corresponds to the parallel group velocity, and
the bottom panel, Fig. 2b, to the perpendicular group velocity. The horizontal axis in
both plots corresponds to the scaled frequency as in the contour plots of Fig. 1. The
four selected curves in each panel use values of k6, = 0.086 (solid), 0.11 (dashed),
0.16 (dashed-dotted), and 0.34 (solid with dotted markers) that correspond to the
ray trajectories described in Figs. 6-9, shown later in this Section. The values of k 6,
=0.086,0.11, 0.16, and 0.34 correspond to the solid line and Fig. 6, the dashed line
and Fig. 7, the dash-dotted line and Fig. 8, and the dotted line and Fig. 9,
respectively. For comparison, the horizontal (white) dashed line in Fig. 1,
corresponding to the smallest possible perpendicular wave number in LAPD, has the
value of k 8, =0.098 . Thus, the perpendicular wave numbers represented in Figs. 6-
9 are representative of those which would be found in the LAPD resonator. From the
top panel of Fig. 2, it is apparent that there is very little change in the parallel group



velocity as k, increases over this parameter range. The cutoff is located at roughly
the ion-ion hybrid frequency, and the wave continuously slows down as it
approaches the hydrogen cyclotron resonance (i.e., w = 4Q,, ). The lower panel
shows a much more drastic change in the perpendicular group velocity. Due to the
inclusion of ¢ in the dispersion relation, the perpendicular group velocity is

always slightly positive near the ion-ion hybrid frequency, although this effect
decreases in importance as k, increases. As k, increases, the line-cuts exhibit the

backward-traveling property of the shear Alfvén wave over a larger portion of the
frequency range. But at small values of k , the wave becomes forward-traveling, as

the coupling to the compressional mode increases.

Figure 3 illustrates the behavior of the shear-mode dispersion relation when
finite ion temperature is included for LAPD conditions. Shown are color contours of
the scaled parallel wave number kv,/R,, as a function of scaled perpendicular

wave number and frequency. The calculation uses Eqgs. (17) and (18) in place of
Egs. (15) and (16). The base plasma parameters are the same as in Figs. 1 and 2, but
now the ion temperature is set to 7; =1 eV for both ion species. This results in a ratio

of p,./6,=0.6. The vertical axis is the scaled perpendicular wave number, and the

horizontal axis is the scaled frequency. The same scaling factors as in Fig. 1 are used
for both quantities. At small values of k,J, , the wave propagates for all frequencies,

and exhibits compressional-mode behavior. As k d, increases, a parallel cutoff
appears. Its value starts close to the ion-ion hybrid frequency (w,/,, =2.12), but

due to temperature effects it deviates slightly from this value, as indicated by the
thick white lines, which correspond to the k =0 condition. Two Kinetic features

appear at the cyclotron harmonics of helium, but they are small effects due to the
small temperature considered. An important feature illustrated near the top right
quadrant of Fig. 3 is that, for large & , and frequencies above the third helium

harmonic, the contours exhibit a leftward tilt. Because the perpendicular group
velocity can be expressed as v,, =(dw/dk, ) with k, fixed in this partial derivative,

the direction of this component of the group velocity can be deduced from the
direction that a contour of constant k, takes in this display format. If the contour

moves right (left) for increasing k, , then the wave is forward (backward) traveling.

Figure 4 uses the same display format and color scale as Fig. 1. It illustrates
the effects caused by the inclusion of a finite ion temperature to shear-mode
propagation in the LAPD plasma, for the plasma parameters of Fig. 3. Again, the
(red) dashed line represents the ion-ion hybrid frequency. The first four harmonics
of the helium ion are included in the expressions for ¢, and ¢,, as they fall in the

frequency range displayed. The general features are as before with the addition of
enhanced perpendicular propagation, indicating ion-Bernstein wave features,
especially for frequencies close to the cyclotron harmonics and to the ion-ion hybrid
frequency. Also, at larger k, the cutoff-frequency differs from the value of the ion-



ion hybrid frequency. The large perpendicular group velocity near the cutoff can be
explained by the departure of the cutoff from the ion-ion hybrid. Figure 5 shows
line-cuts of Fig. 4, similar to those in Fig. 2 associated with Fig. 1. The line styles
correspond to the same values of k.0, as in Fig. 2. Comparing Fig. 5 to Fig. 2, it can
be seen that the perpendicular group velocity is larger near the cutoff when finite
ion temperature is included than in the cold ion case; the parallel group velocity is
essentially unchanged. Further, a bite-out at @/€2,,, =3 exists due to the cyclotron

harmonic response.

With this background, the ray tracing results are now examined. The spatial
dependence of the confinement magnetic field used in the resonator experiments in
LAPD can be described adequately in cylindrical geometry, ( p,¢,z) , by the

expression

~ 0B. .
B,=B.(z-£Z2p.  (25)
2 0z

The axial (z-dependence) of the magnetic well is approximated by the expression
Z2
BZ(Z) = Bmin +(Bmax _Bmin)tanh2 (E) ) (26)

where, B, =750 G, B, =1250 G, and L =182.6 cm. For the ray trajectories
presented in this section, the frequency is f =818 kHz or w/Q,, =2.84 at B=B,_ .

This frequency value corresponds to that of a candidate resonant eigenmode
measured in the experiment. Each ray trajectory is started at the origin of the
cylindrical coordinate system. The initial angle, 1, between the z-axis and the
initial scaled wave vector, V, is varied for each ray with the magnitude of v
determined by the dispersion relation. This initial choice of ¥ sets the value of the
perpendicular wavelength, which is mostly invariant along the trajectory; small
variations arise due to the radial component of the magnetic field whose magnitude
increases with radius.

In determining the resonator quality factor, Q, due solely to radial spreading
of the associated ray, it is useful to start from the definition

0-0, (27)

where U is the energy stored and P is the power lost. The stored energy can be
written as U = uzwrR*’d where R is the transverse dimension of the device, d is the
spatial extent of the well in the longitudinal direction, and # is an average energy



density stored in the wave across the column of the plasma. The expression for the
power lostis P=v, 27Rdu,_ , with u,_,, the energy density at the edge of the

plasmaand v, , the average perpendicular group velocity over the trajectory of the
ray. This can be computed by v,, = Ar/Ar where Ar is the radial displacement that

a ray experiences upon traveling from the center to the reflection point and At is
the time it takes for the ray to travel this distance. Implicit in this expression is the
assumption that all wave energy that reaches the plasma edge escapes. Substituting
these expressions into Eq. (27) gives the expression

Q=[ d

ur=R

R
— wAt . 28
~ (28)

The factor contained in square brackets is a geometric factor and depends on the
radial eigenmode of the system. Taking this factor to be of order unity, an estimate
for the quality factor can be extracted from the ray tracing studies. The radius, R, is
taken to be the width of the plasma column which is roughly 20 cm. The remaining
parameters can be determined by examining the specific ray in question.

In Figs. 6-9, various ray trajectories in the (z, r) plane are shown. In each
figure, the vertical axis is the z-axis of the plasma column, and the horizontal axis
represents the transverse, radial direction r. No motion for the rays in the azimuthal
direction is considered. The solid curves represent rays calculated using the cold
ion dielectric as given in Eqgs. (14), (15) and (16). The dashed line uses the warm
ion dielectric as given in Egs. (14), (17), and (18) with an ion temperature 7, =1eV

for both species. The initial angles are ¥, = 81.5°, 83.4°, 85.4°, and 87.7° for Figs. 6,
7,8, and 9 respectively, resulting in a higher k, value for each successive figure (
k.6, =0.086,0.11, 0.16, and 0.34, respectively). As mentioned previously, these

values correspond respectively to the solid, dashed, dash-dotted, and dotted lines in
both Figs. 2 and 5. Note that the length-scale used for the axial direction in Figs. 6-9
is a factor of 100 larger than in the transverse direction because wave propagation
is essentially along the magnetic field. Also, Figs. 6-9 display the behavior on small
radial scales on the order of centimeters; this is done to aid the reader in
understanding the plots. The features of the ray trajectories displayed extrapolate
well to larger radii, except that the curvature of the mirror magnetic field causes a
slight bowing as the ray propagates between reflection points.

From Fig. 6, it is seen that the perpendicular group velocity reverses
direction in both the cold and hot rays as they approach the reflection point. This is
in agreement with the contour plots of the group velocity, as shown in Figs. 1 and 4.
This feature follows from the fact that, near the midplane (z = 0), the wave is a
backward wave, hence it focuses radially, while near the reflection layer radial-
spreading results because the wave becomes a forward wave. In order for the wave
energy to be lost (or not) out of the column, one effect must dominate over the



other. In this case, it is clear that the transverse motion near the reflection point is
dominant and causes net wave propagation towards the edge of the plasma. Itis
also apparent that finite ion temperature leads to enhanced transverse motion near
the reflection layer over the cold ion result, as expected from Figs. 1 and 4. In
computing the quality factor, Eq. (28) is used here and in all subsequent
calculations. It is determined that Q = 230 for the cold ion ray and Q = 160 when ion
temperature is included.

[t is not necessarily the case that the inclusion of finite ion temperature leads
to smaller Q-values. In the top panel of Fig. 7 and the bottom panel of Fig. 8, it can
clearly be seen that little radial wandering occurs due to the balance of the
transverse motion near the midplane (z=0) and near the reflection layer. This
occurs at different initial angles for the cold-ion and warm-ion trajectories due to
the increase in the perpendicular group velocity for the warm ions. Itis conceivable
that, if properly tuned, a ray would perfectly retrace itself and the quality factor due
to radial spreading would be infinite, as no radial motion would take place. The
quality factors for Fig. 7 are Q = 2500 for the cold-ion ray and Q = 430 for the warm-
ion case, while for Fig. 8 these values become Q = 130 and Q = 14,000, respectively.

For Fig. 9, it is clear that the backward-traveling motion at the midplane
(z=0) is dominant and leads to the ray quickly traveling to the edge of the plasma.
Again, the perpendicular motion of the ray near the reflection layer is more
pronounced when ion temperature is included. In this case the quality factors are Q
= 130 for the cold ions and Q = 360 for warm ions.

Finally, it must be noted that the assumptions underlying the ray tracing
equations are not rigorously satisfied as applied to the LAPD resonator in the axial
direction, but in the radial direction they are appropriate. The axial gradient scale
length of the confinement magnetic field in the resonator configuration used in
LAPD is comparable to the axial wavelength of the candidate eigenmodes. A more
accurate eigenmode analysis has been presented elsewhere [14], but it neglected
the inclusion of ¢, and it did not consider the effect of finite ion temperature. The

present ray tracing results can, however, be used to obtain an estimate of the effect
of ion temperature on radial confinement of the wave energy. These features are
useful in understanding later sections of the manuscript, as well as in illustrating
properties expected in future discussions of resonator phenomena.

IV. PROPAGATION IN ETPD

The background magnetic field in the ETPD is well-described in zeroth-order
by a toroidal field which in cylindrical coordinates, ( p,q),z) , takes the form,

—— 4. (29)



For the present configuration of ETPD, B, =200 G is the magnetic field strength on
axis, R =500 cm is the major radius, r is the radial distance from the magnetic axis,
and 0 is the poloidal angle. In the actual operation of the device, a small vertical
field (z-component) is applied to create a helical field-line geometry consisting of
multiple plasma rings. In this manuscript, the z-component is neglected in order to
gain an understanding of the pure effects of field-line curvature on the ray path.
The plasma considered consists of two ion species, hydrogen and helium, of equal

concentrations with a generic electron density of n, =1x10"”cm™, and equal ion
temperatures of 7, =10 eV. Because of the significantly lower magnetic field and

much larger ion temperature than is achieved in LAPD, finite ion Larmor radius
effects play an important role in the ray trajectories in ETPD.

In the purely toroidal field, two wave propagation invariants exist. The first
is the z-component of the wave vector, k,. The second invariant, m, is related to the

toroidal component of the scaled wave vector, k, = m/p . For simplicity, k. is set to
zero, and due to the nature of the magnetic field, k, =k, and k, =k, . Due to the

invariant nature of the parallel wave number, &, cannot vanish except when it is
zero from the outset. This precludes the possibility of a resonator in this
environment, but the rays, in principle, can sample the ion-ion hybrid layer due to
cross-field propagation. Using the simplified dispersion relation, Eq. (2), which
neglects coupling to the compressional wave, and solving for &, gives

2
m
k0, = ———-1
kyp'e, (30)

It is clear from this expression that a radial reflection point exists at p =m/k, /¢,
preventing the ray from traveling to larger radii. As this radial reflection point is
approached, k, becomes small, and the wave starts to exhibit compressional

features. This alters the predominantly field-aligned propagation characteristic of
the shear mode

Figure 10 illustrates two ray trajectories in ETPD, each corresponding to a
frequency of w/Q,,, =2.6 at the starting radius, r = 0 cm. The vertical axis indicates

the distance of the ray from the minor axis. The horizontal axis is the time (in us)
that is required for the ray to travel from the starting position (r =0) to a given
value of r. The solid curve is a ray calculated with the cold ion dispersion relation,
and the dashed curve, a ray that is found from the warm ion expressions. The two
dash-dotted lines represent the positions at which the frequency matches the local
ion-ion hybrid frequency, ®,/RQ,, =2, at r=-116 cm, and the third cyclotron

harmonic of helium at r =77 cm, as labeled in the figure. The direction of the



gradient of the magnetic field strength is also shown, increasing for negative values
of r. The ray is launched from an initial position where the x-axis intersects the
minor axis, r, = RX. The initial wave vector is placed in the plane defined by the
vectors 0 and (ﬁ with the angle between the wave vector and the magnetic field set
to ¥, =88.9°and k, set to a negative value for both the solid line and the dashed

line (which, for the dashed line, gives a value of k 6, =0.5 with p,,/d, =6.1 initially).

The solid curve illustrates the backward-traveling nature of the shear mode as it
initially propagates towards positive values of r . As it approaches the radial
reflection point, at roughly t = 120 ps, the group velocity switches direction due to
transitioning from a backward traveling wave with high &, to a forward traveling

wave with small k| . This is due to the coupling associated with the ¢, term
included in the dispersion relation. As k, continues to decrease, eventually &, flips

sign, and the wave experiences another, more abrupt, radial reflection. The process
then occurs in reverse order, but now with a positive k,. From the ray trajectory, it

can be deduced that the toroidal field preferentially increases the value of k,. This

can be understood from Eq. (4). If dn/dr is expanded in terms of the parameters on
which it depends,

or 0dy or 9B or

on _ a”a_w.,_a_”% (31)

The first term on the right is a pure curvature effect, and the second term is due to
the magnetic field gradient. It is clear from Eq. (30) that the effect of curvature

causes ‘kp‘ to decrease from its initial negative value towards zero as the ray travels
radially outward (towards positive r). Upon reflection, k, becomes positive, and its

value increases as it travels radially inward (towards negative r). The result is that
the curvature tends to increase k, as the ray propagates. Similarly, dn/0B <0 and

dB/or points radially inward leading to the same effect due to the magnetic

gradient. Thus, for the cold ray, k, is always increasing as it propagates. This

curvature effect is not exclusively a two-ion effect, but is present also in a single-ion
species plasma when ion temperature effects are negligible. Finally, a comment
should be made regarding the two-dimensional representation of the three-
dimensional ray trajectory. Because the parallel group velocity is much larger than
the perpendicular group velocity over a majority of the ray trajectory, the ray
experiences toroidal transits during the course of its motion. For example, at 1 =120
us, the cold ray experiences roughly three toroidal transits.

The finite ion temperature result for this magnetic configuration contains
some features present in the cold result, but to better understand the kinetic effects,
the dispersion relation is considered in Fig. 11 and the group velocity, in Fig. 12.
Figure 11 illustrates the dispersion relation using the display format of Fig. 3. Again,



the scaled frequency is on the horizontal axis, and the scaled perpendicular wave
number is on the vertical axis; the color contours represent the scaled parallel wave
number. The k, =0 boundary is outlined as a thick white line, as before. Figure 12 is
the analog of Figs. 1 and 4, using similar axes, with the contours representing the
parallel group velocity shown in the top panel and those for the perpendicular
group velocity in the bottom panel. The vertical (red) dashed line represents the
ion-ion hybrid frequency and would be the cold cutoff in the absence of temperature
effects. From Figs. 11 and 12 it is apparent that the inclusion of temperature effects
creates a complex structure between each cyclotron harmonic. The wave properties
can be separated into three distinct regions based on the relative values of k, and

@ . At small values of &, the dispersion relation resembles that of the
compressional mode, i.e., it propagates isotropically in the direction of the wave
vector and does not resonate strongly with the cyclotron harmonics of helium. At
intermediate values of k, (roughly in the range of k6, =0.15-0.3) and values of w

close to the first and second cutoffs, the wave begins to exhibit more of the shear
mode characteristics. This is evident by the regions over which the wave is
backward-traveling, and by the small value of the perpendicular group velocity
relative to the parallel component. Finally, at larger values of k, and for values of @

away from the first and second cutoff, the wave becomes increasingly forward-
propagating with increasing perpendicular group velocity. The inclusion of ion
temperature introduces new cutoffs (propagation bands) at various frequencies that
depend strongly on k, . The nature of the wave at these cutoffs, whether it is

forward or backward-traveling, corresponds to the direction of the k, =0 contour in

Fig. 11 as before. These properties are useful in interpreting the ray trajectory
represented by the dashed line in Fig. 10. For that ray the initial parameters are
chosen such that k,6, =0.5and w/Q,,, =2.6, so that the wave starts as forward-

traveling. Because k, has a negative value, this leads to inward (negative r)
propagation. Due to magnetic gradient and curvature effects, the value of &,

increases from its negative value towards zero, decreasing the value of k J,. From

Fig. 12(b), it can be seen that there are three distinct regions that the wave must
travel through in parameter space as k, approaches zero. In transitioning from one

region to the next, the ray changes its direction of radial propagation. It is for this
reason that there are five total radial reflections observed in the figure. The radial
reflection at 7 = 90 ps corresponds to the reversal of k, from negative to positive.
The two reflections adjacent to this k, =0 point represent that transition from a
forward traveling wave to a backward traveling wave at intermediate values of %, .
The last two radial reflection points represent the transition from intermediate
values of k, to large values where the wave is again forward-traveling. At large
values of ¢, the wave approaches the third cyclotron harmonic of helium, located at
r="T7cm.



Figure 13 illustrates the trajectories of a bundle of rays launched from the
same position and with the same plasma conditions as the ray described in Fig. 10.
The rays are all launched at the same frequency (w/Q,,, =2.6), but differ with

respect to the initial angle, 3, between the magnetic field and the wave vector.

These angles are both positive and negative 11.25°, 22.5°, 33.75°, 45°, 56.25°, 67.5°,
78.75°, 84.38°, 84.6°, 85.5°, 86.4°, 87.3°, 88.2°, and 89.1°. The survey of opening
angles is roughly equivalent to starting each of the rays at a different point along the
lines in Fig. 10. The top panel of Fig. 13 corresponds to the cold ion result (the solid
curve in Fig. 10), and the bottom panel, to the warm ion result (the dashed curve in
Fig. 10). In both panels, time (in wus) is displayed along the horizontal axis with 150
microseconds corresponding, roughly, to one toroidal transit. The vertical axis on
the left side indicates radial displacement from the initial position, with positive
values corresponding to the outboard side and negative values to the inboard side of
the torus. The vertical axis on the right side shows the corresponding change in the
ratio of the frequency to the local value of the cyclotron frequency of helium. In the
top panel, it is seen that some of the rays at lower values of positive vy are quickly

refracted out of the plasma column, in both the positive and negative radial
directions. These correspond to low perpendicular wave number and posses
compressional wave features. Those with more oblique initial angles are more field-
aligned and thus propagate farther before refracting out of the plasma column. Rays
whose perpendicular wave vector initially point inward, propagate outward (due to
the backward-traveling nature of the wave). As they do so, k, increases towards

positive values until they experience a radial reflection. Thus, the wave energy is
predominantly deposited on the inboard side. When ion temperature is included in
the analysis, this picture changes. As seen in the lower panel (note that time axis is
compressed relative to that of top panel), many rays experience multiple radial
reflections as mentioned in the discussion of Fig. 10. Those rays that start with &,
initially pointing outward ultimately arrive at the outboard side of the device,
regardless of how many radial reflections occur. Those rays that start with &,
pointing inward are carried to the inboard side of the device due to the large inward
radial excursion shown in Fig. 10 near the zero of k, .

V. PROPAGATION IN ITER

Next, the dispersion relation and group velocity for ITER burning plasma
parameters are considered. Figure 14 is the equivalent of Figs. 4 and 12, but now
evaluated for characteristic parameters expected for the ITER device. Accordingly
the frequency is scaled to the tritium cyclotron frequency €,. A deuterium-tritium
plasma is considered with equal concentrations of each species. The total electron
density is setto n, =1.0x10"*cm™, the magnetic field, B =53kG, giving an Alfvén

speed of v, =7.34x10°cm/s . The ion temperature is 7; =10 keV for both ion species.

This results in a ratio of p;/d, =6. Only two harmonics are included in the
expressions for ¢, and ¢, in this case. For these constant parameters the cold ion-



ion hybrid frequency is a)/ w, =+1.5=1.22,and is represented by the vertical (red)

dashed line in Fig.14. As before, the top panel, Fig. 14a, corresponds to the parallel
group velocity and the bottom panel, Fig. 14b, to the perpendicular group velocity.
Note that now the color scales in the top and bottom panels have been increased
each by roughly an order of magnitude from those used in Fig. 4 for LAPD. As was
seen in the analysis of the ETPD device, three distinct regions of k, and @ exist,

corresponding to the three different wave properties this mode can have. The k, =0

contour, indicated by the leading left edge of the contour plot, shows that the wave
is backward-traveling near the reflection point, but as this contour approaches its
asymptotic limit at large k , it becomes nearly vertical in the plane and the

magnitude of the perpendicular group velocity vanishes. Figure 15 illustrates this
property by displaying line-cuts of the group velocity at various values of &k, . The

horizontal axis corresponds to the scaled frequency, and the vertical axis is the
appropriate group velocity. The top panel corresponds to the parallel group

velocity, and the bottom panel, the perpendicular group velocity. The values of
k,8,=0.1,0.2, 0.3, and 0.4 correspond to the solid line, the dashed line, the dot-

dashed line, and the solid line with dotted markers, respectively. In both panels, the
thick tick mark on the horizontal axis indicates the value of the ion-ion hybrid
frequency. In the top panel, Fig. 153, it is clear that the parallel group velocity
increases and the wave cutoff moves to lower frequencies with increasing
perpendicular wave number. Both effects are attributed to the increasing
importance of finite ion Larmor radius effects. The lower panel shows the
corresponding perpendicular group velocity. At higher frequencies, the
perpendicular group velocity also increases. Near the cutoff, the wave is backward-
traveling, but with a smaller perpendicular group velocity as k, increases. The

abrupt change in value displayed at the cutoff simply indicates that the
perpendicular group velocity does not vanish near the reflection point, a feature
previously shown in Fig. 5 for LAPD conditions.

With this understanding, the ray trajectories are now explored in a simplified
magnetic geometry representative of a tokamak device. The magnetic field consists
of a toroidal field component, B, ,and a poloidal field, Bp . In the cylindrical

approximation, these fields are
B =B, (1 - %cos@) , (32)

B =B (33

’ Rq(r)’

where B, = 53 KG is the magnetic field at the magnetic axis, r is the radius from the
magnetic axis, R =621 cm is the major radius, 6 is the poloidal angle, and ¢g(r) is the



safety factor. For ease of computation, the safety factor is assumed to have a profile
of the form

q(r)=1+3(2) , (34)

where a =200 cm is the minor radius of the device. In the numerical ray tracing
code used for this case, it is easier to solve the differential equations in Cartesian
coordinates, but to write the previous expressions in toroidal coordinates. Because
of this, a mapping between the two is helpful, i.e., (¢,6,r) — (x,y,z) is the toroidal

position. These coordinates are connected through the relations

O=tan"' =, (35)
o

r=\/p2+z2+R2—2Rp, (37)

p=+x>+y". (38)

The representative burning plasma in ITER is assumed to be an equal mixture of
deuterium and tritium with a total electron density of n, =10"*cm™. When

temperature effects are considered, the ion temperature is taken to be 7; =10 keV

for both ion species. But at this stage, to limit complicating effects, the electron
response is taken to be in the inertial regime.

Figure 16 illustrates two ray trajectories in ITER, each at a frequency of
f =31MHz. This frequency, again, lies within the band in which trapping occurs in a
cold plasma. The plane represented is that of a poloidal cross section where the
horizontal axis is the radial position as measured from the magnetic axis, and the
vertical axis corresponds to the z-coordinate in Eq. (35). The dashed (black) curves
indicate the toroidal magnetic flux surfaces. The solid (blue) curve represents a ray
calculated with the cold ion dispersion relation, and the dashed-dotted (red) curve,
with ion temperature included. Both rays are launched from an initial position of
x=50cm, y=0cm, and z=20cm. The initial wave vector is oriented so that it lies

in a plane formed by B a unit vector pointing in the direction of the total magnetic
field and r, a unit vector pointing normal to the magnetic flux surface. The angle
formed between the magnetic field and the initial wave vector is ¥, = 89.6° for the

cold ion ray, and ¥, =85.7° for the warm ion ray. The initial k£, points towards the



magnetic axis and the initial &, in the direction of the magnetic field. The direction

of the gradient of the toroidal field is illustrated in the upper, right-hand side of the
figure. The field gradient causes the wave vector to increase preferentially in the
direction opposite to the gradient; the effect exists for both cold and hot ions. The
reason for this is presented in the discussion following Eq. (31) in Sec. IV. As in the
ETPD case, the quantity, k¢ =m/p, is an invariant of the motion. However, the

presence of a poloidal field in a tokamak allows for k, to vanish at conjugate points,
thus creating a resonator configuration.

The cold ray, as illustrated by the solid (blue) curve in Fig. 16, displays the
backward-traveling nature of the wave. The ray, initially with a negative k_, travels

radially outward. As it does so, the effects of both curvature and magnetic gradient
as described in Sec. IV, cause the value of k, to preferentially increase towards

positive values. This causes a radial reflection, which then causes the ray to reverse
direction and to move inward across the magnetic flux surfaces. The ray can be seen
to wander outward for three bounces before it starts to move inward. The
trajectory, and the fact that it retraces itself due to the radial reflection, indicates
that the effects of field line curvature and magnetic gradient, in and of themselves,
do not destroy the resonator. In fact, due to the induced radial reflections, they serve
to focus the energy allowing for constructive reinforcement over the course of
multiple transits. It is worth mentioning that at the reflection points along the field
line, the conditions for ray tracing break down even though they are well satisfied
away from these reflection points. This is in agreement with the study by Rauch and
Roux [15]. In their study, they verified that close to the reflection point, the wave
equation reduces to Airy’s differential equation which confirms that reflection will
indeed happen. Their same analysis also applies in the case presented here. Further,
this suggests that a WKB analysis would be appropriate for this situation. The
distance traveled by a ray between conjugate reflection points is on the order of 10
meters with the parallel wavelength being on the order of 30 cm at z = 0. The fact
that the effective wave potential becomes small near the reflection points indicates
that the connection formulas must be used and a quantization condition would
result from the WKB analysis. This methodology has been reported by the authors
elsewhere [12], but the terms associated with & were not included in the analysis.

The dashed-dotted (red) curve in Fig. 16 illustrates a ray trajectory in which
ion temperature effects are included. In order to obtain a complete ray trajectory,
an additional ray is launched from the same starting position but with the direction
of the wave vector reversed, giving a complete passing through the region. Because
of the effects of field line curvature and magnetic gradient, the value of &,
preferentially increases as in the previous cases. From Figs. 13 and 14, it can be seen
that the inclusion of hot ion effects causes the reflection point of the wave to
decrease below the traditional, cold ion-ion hybrid frequency as k, increases. This
causes the reflection point to continuously recede away from the ray as the ray
propagates towards the reflection point. Thus, as the ray propagates, it achieves



higher and higher values of k, causing the reflection point to approach the
cyclotron frequency of tritium.

To illustrate the expected electron behavior to be encountered, Fig. 17
displays the value of the scaled phase-velocity parameter usually entering in the
plasma dispersion function, £ = a)/ \Ek”ve , where V, is the electron thermal velocity.
The electron temperature is taken to be 10 keV, and k;, is extracted from the hot-ion
ray trajectory shown in Fig. 16. The horizontal axis in Fig. 17 corresponds to the
distance the ray has traveled (in meters). The values of the solid black curve are
given by the left vertical scale, which represents the value of £ as the ray evolves.
The dashed (blue) curve displays the radial position of the ray as it moves along its
trajectory and its value is displayed in the vertical scale on the right of the figure.
The dash-dotted line shows where the ion-ion hybrid frequency would be located if
warm ion effects were negligible. As can be seen from Fig. 17, the ray travels well
past the point where it would traditionally reflect in a cold plasma. The values of £
found in Fig. 17 indicate that the electron response is not in the inertial regime.
Instead of using Eq. (14), the electrons would better be treated by the adiabatic
approximation, i.e., Eq. (14) should be replaced with

&= ] (39)

where k, =w,, /v, is the Debye wave number. To gain a qualitative understanding
of the change expected, the dispersion relation with adiabatic electrons is
considered. It is a relatively straightforward calculation to show that the dispersion
relation in this case can be solved for & resulting in the expression

K «[b* +4ad| " -b
— =€ + , (40
k2 2a (40)

where the definitions of @, b, and d now become

kp K2
a=-24+"Lg 41
Crges G

2 2
b=-%|¢, k—§+gl +g§y+k—§ , (42)
kO kO



Figure 18 shows a contour display of Eq. (40) using Eqgs. (17) and (18) for the
dielectric tensor components, which include ion temperature effects. The plasma
parameters are for ITER values as specified previously. From the display, it is seen
that a cutoff now exists for all values of &, . Further, the wave is forward-traveling,

as the contours are all moving from left to right in the display plane. Finally, the
relevant perpendicular wavelengths are shifted to larger values than would be
present in the inertial case. All of this suggests that the ray properties can
experience new features that can have important consequences for the resonator
behavior, beyond the effects due to hot ions reported in the present manuscript.
This indicates that a dedicated study that addresses the consequences of the
adiabatic electron response in the ITER environment is warranted.

VI. CONCLUSION

From the examination of ray tracing trajectories, including finite ion
temperature, it is concluded that the low value of the quality factors, Q, measured in
the LAPD resonator experiments [13,14] cannot be attributed purely to radial
spreading of the wave energy due to the nonuniform nature of the magnetic well
geometry. Itis found that the quantitative explanation of the measured Q-values
requires a mechanism which dissipates energy with an effective damping rate at
least an order of magnitude larger than the rate at which energy is lost radially by
wave convection. It is suggestive that mode conversion processes and/or particle
resonances in the nonuniform wave environment must be included to fully describe
the behavior of this resonator.

It has been demonstrated that when temperature effects are negligible, and
for rays propagating along a curved field line, field-line curvature effects
preferentially increase the component of the wave vector in the direction opposite
to the curvature of the field line. This, combined with a zero in the perpendicular
group velocity, explains the radial focusing effect identified by Mithaiwala et al.[16]
in the analysis of a magnetospheric resonator. The radial focusing of the wave
enhances energy trapping in resonators that exist along a field line where the
curvature is predominantly in one direction. When ion temperature effects are
considered, many of the same propagation characteristics are found as in the cold-
ion case. However, at sufficiently large temperatures, three regions of parameter
space are introduced which determine the qualitative characteristics of the wave.
At small values of k,§,, the wave is isotropic and strongly exhibits compressional

mode characteristics. Atintermediate values, the wave is backward traveling with a
cutoff existing close to the ion-ion hybrid frequency, exhibiting shear mode
characteristics. At large values, the wave again becomes forward-traveling. A single
ray can experience all three regions of parameter space as it propagates through a
plasma confined in a toroidal magnetic field, experiencing a perpendicular reflection
as it transitions from one region to the next.



When ion temperature effects are negligible in a tokamak device, as may be the
case for edge conditions, it is clear from the ray tracing studies that a resonator can
exist in such a plasma. The effects of field line curvature cause the ray to be focused
radially allowing for many reflections which largely retrace each other. However,
when ion temperature effects are included, especially at the core temperatures
expected in ITER burning plasmas, it is unclear at the present stage whether the
resonator can still exist. The present study identifies that to resolve this issue a
future analysis of ray propagation with adiabatic electrons is required.
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Figure Captions

Fig. 1. (color online) Contour displays of components of group velocity for upper
branch of shear Alfvén wave obtained from cold plasma dispersion relation for
LAPD parameters. lon mixture is 45% H*, 55% He*, magnetic field strength is 750 G
and the electron density is 1.3x10"cm™. Vertical axis is the scaled perpendicular
wave number, k d,, and the horizontal axis, the scaled frequency, w/Q,, . (a)

Parallel group velocity, (b) perpendicular group velocity. Horizontal dashed (white)



line represents lower limit on perpendicular wave numbers allowed in LAPD due to
finite radial size. Vertical dashed (red) line represents the ion-ion hybrid frequency.
Note that contour scales in panels (a) and (b) differ by two orders of magnitude.

Fig. 2. Line cuts of contour displays in Fig. 1 for selected values of k, §,. (a) Parallel
group velocity, (b) perpendicular group velocity. Vertical axis is the corresponding
component of the group velocity and horizontal axis, the scaled frequency. The solid,
dashed, dash-dotted, and dotted curves correspond to values of k, §,= 0.086, 0.11,
0.16, and 0.34, respectively. The parallel group velocity is largely unchanged over
this parameter range while the perpendicular group velocity indicates reflections in
the perpendicular direction due to the inclusion of ¢  in the dispersion relation. At

small values of k , these reflections are close to w, given by Eq. (24). As k|,
increases, the reflections move towards w, and €, . The wave is forward-traveling
for frequencies close to w, indicating a reversal in perpendicular direction as the
wave approaches the parallel reflection point.

Fig. 3. (color online) Contour display of dispersion relation for the same LAPD base
parameters used in Fig. 1, but now both ion species have a finite temperature of

T, =1eV. The vertical axis is the scaled perpendicular wave number, the horizontal
axis the scaled frequency, and the contours correspond to the scaled parallel wave
number. The k, =0 contour is given by the white curves. Finite ion- temperature
effects appear at the second harmonic of helium where coupling to ion Bernstein
waves occurs. A similar feature exists at the third harmonic but is less pronounced.
Due to finite Larmor radius effects, the k, =0 contour no longer converges to w,

asymptotically as k, — 0.

Fig. 4. (color online) Contours of group velocity including finite ion temperature
corresponding to conditions used in Fig. 3. To be contrasted to the cold ion case of
Fig. 1. Vertical axis is the scaled perpendicular wave number and horizontal axis is
the scaled frequency. (a) Parallel group velocity, (b) perpendicular group velocity.
Vertical (red) dashed line represents w, . Finite ion temperature generates features

near harmonics of Q,, and causes the parallel cutoff to deviate from w, atlarge
values of &, . A large, perpendicular group velocity is now present near the parallel

cutoff. Note that contour scales in panels (a) and (b) differ by two orders of
magnitude.

Fig. 5. Line cuts of contour displays in Fig. 4 for selected values of k 6, . (a) Parallel
group velocity, (b) perpendicular group velocity. Vertical axis is the corresponding
component of the group velocity and horizontal axis, the scaled frequency. Line
styles correspond to the same values of k, in Fig. 2. Overall, the qualitative

behavior is similar to the cold ion case of Fig. 2 except that a bite-out appears in
both components of the group velocity at w/Q,,, =3, the parallel cutoff moves to



higher frequencies as k, increases, and the perpendicular group velocity is much
larger near the parallel cutoff.

Fig. 6. Ray trajectories for LAPD. Vertical axis is the axial displacement of the ray,
and the horizontal axis, the radial displacement. The rays are launched from the
center of the magnetic well (r=0, z=0) with the initial value of k, corresponding to

the value associated with the solid curves in Figs. 2 and 5. Note that the axial scale
(z) is two orders of magnitude larger than transverse scale (r) to accommodate the
highly field-aligned propagation. The solid curve in Fig. 6 uses cold ions, and the
dashed curve includes ion temperature effects. Both rays are predominantly field-
aligned exhibiting only slight transverse displacements close to the reflection layer.
The transverse propagation near the reflection layer is dominant and causes the
rays to wander towards the edge of the plasma.

Fig. 7. Ray trajectories for LAPD with initial value of k, corresponding to the value

associated with the dashed curves in Figs. 2 and 5. Top panel (a) uses cold ions, and
bottom panel (b) includes finite ion temperature. The top panel shows that the
backward-traveling nature of the ray at the center of the well (z = 0) is
counterbalanced by the forward-traveling nature of the wave near the reflection
points resulting in little net transverse motion of the ray even after many transits.
This effect is not present in the bottom panel as the inclusion of ion temperature
causes increased transverse motion near the reflection point.

Fig. 8. Ray trajectories for LAPD with initial value of k, corresponding to the value

associated with the dashed-dotted lines in Figs. 2 and 5. Top panel (a) uses cold
ions, and bottom panel (b) includes finite ion temperature. For the top panel, the
backward-traveling nature of the ray near the center of the well (z = 0) dominates
and the ray wanders to the plasma edge. In the bottom panel, the backward-
traveling nature of the wave towards the center is balanced by the forward-
traveling nature at the reflection point. The resulting ray almost retraces itself.

Fig. 9. Ray trajectories for LAPD with initial value of k, corresponding to the value

associated with the solid curve with dotted markers in Figs. 2 and 5. Here the solid
curve uses cold ions, and dashed curve includes finite ion temperature. For this
wave number the backward-traveling nature of the wave dominates the transverse
motion of the ray in both cold and warm ion cases causing the rays to move to the
plasma edge.

Fig. 10. Ray trajectories for ETPD. The plasma is comprised of 50% H*, 50% He* ions
with an electron density of 1012 cm-3. Vertical axis represents radial displacement
from the center of the plasma with positive (negative) values representing outboard
(inboard) propagation. The horizontal axis is time of propagation with 150 us
roughly equivalent to one toroidal transit. The direction of the magnetic field
gradient is shown. This gradient causes the perpendicular wave number to increase
in the opposite direction. The two dashed-dotted lines represent the positions



where the wave frequency matches the local values of w, and the third harmonic of
Q
dashed curve uses hot ions with 7, =10 eV. Both rays start with &, initially pointing

4 as indicated. The solid curve illustrates a ray trajectory using cold ions and the

radially inward.

Fig. 11. (color online) Contour display of dispersion relation for ETPD conditions
given in Fig. 10 with magnetic field strength of B =200 Gauss and hot ions. Vertical
axis is the scaled perpendicular wave number, the horizontal axis is the scaled
frequency, and the contours are the scaled parallel wave number. The k, =0 contour

is illustrated by the thick (white) lines. The ‘S’ shape of the contours between helium
cyclotron harmonics shows regions with a backward-traveling wave sandwiched
between two forward-traveling regions.

Fig. 12. (color online) Contour displays of components of group velocity for
conditions given in Fig. 11. Vertical axis is the scaled perpendicular wave number
and horizontal axis is the scaled frequency. (a) Parallel group velocity, (b)
perpendicular group velocity. The vertical dashed (red) line is the ion-ion hybrid
frequency. Regions of forward and backward-traveling waves are seen in the
bottom panel.

Fig. 13. (color online) A bundle of rays propagating in ETPD. The vertical axis on the
left represents radial displacement from the center of the plasma with positive
(negative) values representing outboard (inboard) motion. The vertical axis on the
right represents the scaled frequency associated with the radial position of the ray.
The horizontal axis is the time of propagation for the ray. (a) Cold ions. Rays with
low perpendicular wave number have compressional characteristics and are quickly
lost out of the plasma. More oblique rays stay within the plasma column for a
greater length of time. Radial reflections cause wave propagation towards the
inboard side. (b) Hot ions. Rays with an initial perpendicular wave number pointing
towards the inboard side are turned towards the inboard side when k, becomes

small enough that compressional features dominate. Rays with perpendicular wave
number pointing towards the outboard side propagate towards the third cyclotron
harmonic of helium.

Fig. 14. (color online) Contour displays of components of group velocity for ITER
conditions. The plasma is comprised of 50% D*, 50% T* with an electron density of
1014 cm-3, equal ion temperatures of 10 keV and a toroidal magnetic field strength of
53 kG. Vertical axis is the scaled perpendicular wave number and horizontal axis is
the scaled frequency. (a) Parallel group velocity, (b) perpendicular group velocity.
Vertical dashed (red) line is ion-ion hybrid frequency. Several of the qualitative
features of the group velocity seen in Figs. 4 and 12 are also present. Note that
contour scales in panels (a) and (b) differ by two orders of magnitude.



Fig. 15. Line cuts of the contour displays in Fig. 14 for selected values of k, . The
values of k6, =0.1, 0.2, 0.3, and 0.4 are represented by the solid curve, dashed

curve, dashed-dotted curve, and solid curve with dotted markers, respectively. The
small, thick vertical lines at the bottom of each panel represent the ion-ion hybrid
frequency. (a) The parallel group velocity. Greater variation between cuts is seen
with the rays having larger speed as k, increases. (b) The perpendicular group

velocity. The frequency interval over which the wave is backward-traveling shifts to
lower frequencies, together with the reflection point, as &, increases.

Fig. 16. (color online) Poloidal projection of ray trajectories in ITER. Vertical axis
represents vertical displacement of a ray from the magnetic axis, and the horizontal
axis represents the radial displacement from the magnetic axis. The black dashed
lines represent the nested flux surfaces. The solid (blue) curve is a ray for which the
cold plasma dispersion relation is used, and the dashed-dotted (red) curve uses the
hot-ion dispersion relation. Both rays have an initial perpendicular wave number
that points towards the magnetic axis. The direction of the gradient of the toroidal
field strength is shown; the perpendicular wave number preferentially increases in
the opposite direction of this gradient. The cold ray is trapped within the magnetic
well. [t wanders outward across magnetic flux surfaces before propagating inward
due to the perpendicular reflection examined earlier for ETPD. The hot ion result is
not confined due to the reflection point moving towards the inboard side of the
device as the perpendicular wave number increases.

Fig. 17. (color online) Scaled phase velocity parameter associated with the hot-ion
ray in Fig. 16. The horizontal axis is the distance traveled by the ray, which includes
toroidal motion. The vertical axis on the left represents the value of the kinetic

electron parameter £ = a)/\/ikuve and corresponds to the solid black curve. The

electron temperature is 10 keV. The numerical values attained indicate that the
electron response is in the adiabatic regime. The vertical axis on the right is the
value of the radial displacement of the ray from the magnetic axis and corresponds
to the dashed (blue) curve. The dashed-dotted line represents the position of the
ion-ion hybrid frequency.

Fig. 18. (color online) Contour display of the dispersion relation of a shear Alfvén
wave in the upper branch with adiabatic electron behavior for ITER. The vertical
axis is the scaled perpendicular wave number, the horizontal axis is the scaled
frequency, and the contours are the scaled parallel wave number. In this regime the
wave is always forward-traveling and the values of perpendicular wave number are
shifted to much lower values than in the inertial electron case.
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